初中最重要的阶段,大家一定要把握好初中,多做题,多练习,为高考奋战,编辑老师为大家整理了初一数学知识点总结,希望对大家有帮助。 有理数 1.1正数和负数 以前学过的0以外的数前面加上负号-的书叫做负数. 以前学过的0以外的数叫做正数. 数0既不是正数也不是负数,0是正数与负数的分界. 在同一个问题中,分别用正数和负数表示的量具有相反的意义 1.2有理数 1.2.1有理数 正整数、0、负整数统称整数,正分数和负分数统称分数. 整数和分数统称有理数. 1.2.2数轴 规定了原点、正方向、单位长度的直线叫做数轴. 数轴的作用:所有的有理数都可以用数轴上的点来表达. 注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可. ⑵同一根数轴,单位长度不能改变. 一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度. 1.2.3相反数 只有符号不同的两个数叫做互为相反数. 数轴上表示相反数的两个点关于原点对称. 在任意一个数前面添上-号,新的数就表示原数的相反数. 1.2.4绝对值 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值. 一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0. 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数. 比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数. ⑵两个负数,绝对值大的反而小. 1.3有理数的加减法 1.3.1有理数的加法 有理数的加法法则: ⑴同号两数相加,取相同的符号,并把绝对值相加. ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. ⑶一个数同0相加,仍得这个数. 两个数相加,交换加数的位置,和不变. 加法交换律:a+b=b+a 三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变. 加法结合律:(a+b)+c=a+(b+c) 1.3.2有理数的减法 有理数的减法可以转化为加法来进行. 有理数减法法则: 减去一个数,等于加这个数的相反数. a-b=a+(-b) 1.4有理数的乘除法 1.4.1有理数的乘法 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0. 乘积是1的两个数互为倒数. 几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数. 两个数相乘,交换因数的位置,积相等. ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. (ab)c=a(bc) 一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. a(b+c)=ab+ac 数字与字母相乘的书写规范: ⑴数字与字母相乘,乘号要省略,或用 ⑵数字与字母相乘,当系数是1或-1时,1要省略不写. ⑶带分数与字母相乘,带分数应当化成假分数. 用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数. 希望为大家提供的初一数学知识点总结的内容,能够对大家有用,更多相关内容,请及时关注! |