人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

[趣味数学] 三年级数学思维训练:素数

[复制链接]

编者小语:为了丰富同学们的学习生活,数学网三年级奥数题栏目为同学们搜集整理了有关三年级的数学题类试题,供大家参考,希望对大家有所帮助!

求所有的素数p,使4p^2+1和6p^2+1也是素数.

答案:

考虑p对5的余数,余数为1时

余数为1时:4p^2+1≡4*1+1≡0(mod5),由于4p^2+1>=4*2^2+1=17,而又可以被5整除,所以一定不是素数;

余数为2时:6p^2+1≡6*4+1≡0(mod5),由于6p^2+1>=6*2^2+1=25,而又可以被5整除,所以一定不是素数;

余数为3时:6p^2+1≡6*9+1≡0(mod5),由于6p^2+1>=6*2^2+1=25,而又可以被5整除,所以一定不是素数;

余数为4时:4p^2+1≡4*16+1≡0(mod5),由于4p^2+1>=4*2^2+1=17,而又可以被5整除,所以一定不是素数;

所以由上可知5|p,然而p是质数,所以p只能是5。

回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表