人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{

[复制链接]

问题:已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{

答案:↓↓↓

网友采纳  (1)证明:b(n+2)/bn=e^a(n+2)/e^an=e^[a(n+2)-an]要证明{b(n+2)/bn}为常数数列,只需证a(n+2)-an为常数;∵Sn^2=3n^2*an+S(n-1)^2∴Sn^2-S(n-1)^2=[Sn+S(n-1)][Sn-S(n-1)]=[Sn+S(n-1)]*an=3n^2*an∴Sn+S(n-1)=3n^2…...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表