人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式

[复制链接]

问题:设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式

答案:↓↓↓

网友采纳  由an+1=Sn+3n得:Sn+1-Sn=Sn+3n,即Sn+1=2Sn+3n.所以Sn+1-3n+1=2Sn+3n-3n+1.整理得:Sn+1-3n+1=2(Sn-3n),这就是说,数列{Sn-3n}是以a-3为首项,以2为公比的等比数列,故Sn-3n=(a-3)∙2n-1,即Sn=(a-3)ͨ...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表