人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设椭圆x2/a2+y2/b2=1(agt;bgt;0)的左,右焦点分别为F1,F2.点p(a,b)满足|PF1|=|F1F2|(Ⅰ)求椭圆的离心率;(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+(y-√3)2=16相交于M,N两点,且|MN|=5/8|AB|,求椭圆

[复制链接]

问题:设椭圆x2/a2+y2/b2=1(agt;bgt;0)的左,右焦点分别为F1,F2.点p(a,b)满足|PF1|=|F1F2|(Ⅰ)求椭圆的离心率;(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+(y-√3)2=16相交于M,N两点,且|MN|=5/8|AB|,求椭圆

答案:↓↓↓

网友采纳  2011天津的高考题,原题是|PF2|=|F1F2|,不知道是不是你得题目抄错了(1)设F1坐标为(-c,0),F2坐标为(c,0)(c>0)由|PF2|=|F1F2|,可得√[(a-c)²+b²]=2c∴2(c/a)²+c/a-1=0解得,c/a=1/2或-1(舍)∴...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表