人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

定义在R上的单调函数f(x)满足f(3)=log底数是2对数是3且对任意x、y属于R,都有f(x+y)=f(x)+f(y),证f(x)为奇函数;若f(k*3^x)+f(3^x-9^x-2)<0对任意实数恒成立,求k的取值范围?

[复制链接]

问题:定义在R上的单调函数f(x)满足f(3)=log底数是2对数是3且对任意x、y属于R,都有f(x+y)=f(x)+f(y),证f(x)为奇函数;若f(k*3^x)+f(3^x-9^x-2)<0对任意实数恒成立,求k的取值范围?

答案:↓↓↓

网友采纳  取y=-x得到f(x)+f(-x)=0则为奇函数因为f(0)=0>f(k*3^x)+f(3^x-9^x-2)=f(k*3^x+3^x-9^x-2)0设z=3^x则只需z²-(k+1)z+2=0有二负...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表