人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)

[复制链接]

问题:已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)

答案:↓↓↓

网友采纳  当m≤0时,当x接近+∞时,函数f(x)=2mx2-2(4-m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若-b2a=4-m2m≥0,即0<m≤4时结论显然成立;若-b2a=4-m2m<0,时只要△=4(4-m)2-8m=4(m-...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表