人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

离散分布,样本x1,...,xn独立同分布.概率密度P(x=-1)=a/2,P(x=0)=1/2,P(x=1)=(1-a)/2.求a的最大似然估计

[复制链接]

问题:离散分布,样本x1,...,xn独立同分布.概率密度P(x=-1)=a/2,P(x=0)=1/2,P(x=1)=(1-a)/2.求a的最大似然估计

答案:↓↓↓

网友采纳  记样本x1,...,xn中取-1的个数是m,取1的个数是k,则取0的个数是n-m-k,他们都是样本的函数,也就是统计量.似然函数L(a|x1,x2,..,xn)=(a/2)^m*((1-a)/2)^k*(1/2)^(n-m-k)  对数似然函数:L=mlna+kln(1-a)+c(c为与a无关的常数)  令0=dL/da=m/a-k/(1-a)得a=m/(m+k)这就是a的最大似然估计.
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表