人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【如图,现有一张正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点C落在P处,点B落在O处,OP交AB于Q,折痕为MN,连接CP.(1)求证:∠CPD=∠CPQ;(2】

[复制链接]

问题:【如图,现有一张正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点C落在P处,点B落在O处,OP交AB于Q,折痕为MN,连接CP.(1)求证:∠CPD=∠CPQ;(2】

答案:↓↓↓

网友采纳  (1)证明:由翻折变换的性质得出∠PCB=∠CPQ.∵四边形ABCD为正方形,∴AD∥BC,∴∠CPD=∠PCB.∴∠CPD=∠CPQ.(2)证明:过C作CE⊥PO,垂足为E,由(1)知,∠CPD=∠CPQ,在△CDP和△CEP中,∠D=∠CEP=90°∠C...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表