人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【定义在(-1,+∞)上的单调函数f(x),对于任意的x∈(-1,+∞),f[f(x)-xex]=0恒成立,则方程f(x)-f′(x)=x的解所在的区间是()A.(-1,-12)B.(0,12)C.(-12,0)D.(12,1】

[复制链接]

问题:【定义在(-1,+∞)上的单调函数f(x),对于任意的x∈(-1,+∞),f[f(x)-xex]=0恒成立,则方程f(x)-f′(x)=x的解所在的区间是()A.(-1,-12)B.(0,12)C.(-12,0)D.(12,1】

答案:↓↓↓

网友采纳  由题意,可知f(x)-xeX是定值,不妨令t=f(x)-xeX,则f(x)=xeX+t,又f(t)=tet+t=0,解得t=0,所以有f(x)=xeX,所以f′(x)=(x+1)eX,令F(x)=f(x)-f′(x)-x=xex-(x+1)ex-x=-ex-x,可得F(-1)=1-1...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表