问题:f(x)为非0函数高数f(x+y)=f(x)f(y)当x=0时的导数为1证明f(x)的导数等于f(x)
答案:↓↓↓ 孔凡敏的回答: 网友采纳 f(x+y)=f(x)f(y) putx=y=0 f(0)=f(0)f(0) f(0)=1 f'(x)=lim(y->0){[f(x+y)-f(x)]/y} =lim(y->0)[f(x)f(y)-f(x)]/y =f(x)lim(y->0)(f(y)-1)/y =f(x)lim(y->0)(f(0+y)-f(0))/y =f(x)f'(0) =f(x)# |