人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f#39;(§)+f(§

[复制链接]

问题:f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f#39;(§)+f(§

答案:↓↓↓

网友采纳  你说的是罗尔中值定理吧罗尔(Rolle)中值定理如果函数f(x)满足以下条件:①在闭区间[a,b]上连续,②在(a,b)内可导,③f(a)=f(b),则至少存在一个ξ∈(a,b),使得f'(ξ)=0.罗尔中值定理的证明证明:因为函数f(x)在闭区间...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表