问题:三角函数难题3.已知函数f(x)=4cosxsin(x+[π/6])-1(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.4.已知函数f(x)=cos^2ωx+√3sinωxcosωx(ωgt;0)的最小正周期为π.(1)求f(2/3π)的值
答案:↓↓↓ 高小新的回答: 网友采纳 3. (1) f(x)=4cosx(sinxcosπ/6+cosxsinπ/6)-1 =2√3sinxcosx+2cos²x-1 =√3sin2x+cos2x =2(sin2x*√3/2+cos2x*1/2) =2(sin2xcosπ/6+cos2xsinπ/6) =2sin(2x+π/6) ∴f(x)的最小正周期:T=2π/2=π, (2)∵-π/6≤x≤π/4∴-π/6≤2x+π/6≤2π/3 ∴2x+π/6=π/2时,f(x)取得最大值2 2x+π/6=-π/6时,f(x)取得最小值-1 4. (1)f(x)=1/2(1+cos2ωx)+√3/2*sin2ωx =1/2+√3/2*sin2ωx+1/2*cos2ωx =1/2+sin(2ωx+π/6) ∵f(x)的最小正周期为π, ∴T=2π/2ω=π,解得ω=1 ∴f(x)=sin(2x+π/6)+1/2 ∴f(2π/3)=sin(4π/3+π/6)+1/2 =sin(3π/2)+1/2=1/2 (2) 由2kπ-π/2≤2x+π/6≤2kπ+π/2(k∈Z), 得:kπ-π/3≤x≤kπ+π/6,(k∈Z) ∴函数f(x)的单调增区间为 [kπ-π/3,kπ+π/6](k∈Z) 由2kπ+π/2≤2x+π/6≤2kπ+3π/2(k∈Z), 得:kπ+π/6≤x≤kπ+2π/3(k∈Z) 函数f(x)的单调减区间为 [kπ+π/6,kπ+2π/3](k∈Z) 由2x+π/6=kπ+π/2(k∈Z) 得x=kπ/2+π/6(k∈Z) ∴f(x)图象的对称轴方程为 x=kπ/2+π/6(k∈Z) |