人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

f(x)在R上可导且有两个实根,证明其导数最少有一个实根;若f(x)有三个实根,证明其二阶导数最好有一个实根急求

[复制链接]

问题:f(x)在R上可导且有两个实根,证明其导数最少有一个实根;若f(x)有三个实根,证明其二阶导数最好有一个实根急求

答案:↓↓↓

网友采纳  f(x)可导且有两个实根,即有两点使f(x1)=f(x2)=0,  根据中值定理,在区间[x1,x2],必存在一点x,使得f‘(x)*(x2-x1)=f(x2)-f(x1)=0;  由于x1≠x2,所以应有f’(x)=0,即函数f‘(x)在区间至少有一个零点(一个实根);  同理,若存在x1
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表