人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【设f(x)在[a,b]上连续,在(a,b)内二阶可导,又设连接(a,f(a)),(b,f(b))两点的直线和曲线y=f(x)相交于点(c,f(c)),(a<c<b).求证:在(a,b)内至少存在一点ξ,】

[复制链接]

问题:【设f(x)在[a,b]上连续,在(a,b)内二阶可导,又设连接(a,f(a)),(b,f(b))两点的直线和曲线y=f(x)相交于点(c,f(c)),(a<c<b).求证:在(a,b)内至少存在一点ξ,】

答案:↓↓↓

网友采纳  证明:对函数f(x)分别在[a,c]和[c,b]上应用拉格朗日中值定理:存在ξ1∈(a,c),使得f′(ξ1)=f(c)−f(a)c−a;存在ξ2∈(c,b),使得f′(ξ2)=f(b)−f(c)b−c.因为(a,f(a)),(b,f(b)),(c...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表