人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f(η)+f′(η)]=1.】

[复制链接]

问题:【设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f(η)+f′(η)]=1.】

答案:↓↓↓

网友采纳  证明:首先构造辅助函数:g(x)=ex(f(x)-1),则g(x)在[a,b]上连续,在(a,b)内可导.∵f(a)=f(b)=1,∴g(a)=g(b)=1运用罗尔定理知:∃η∈(a,b),使得g′(η)=eη(f(η)+f′(η)-1)=0...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表