人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正

[复制链接]

问题:如图,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正

答案:↓↓↓

网友采纳  如图,  ①连接OB,  ∵AB=AC,BD=CD,  ∴AD是BC垂直平分线,  ∴OB=OC=OP,  ∴∠APO=∠ABO,∠DBO=∠DCO,  ∵∠ABO+∠DBO=30°,  ∴∠APO+∠DCO=30°.故①正确;  ②∵△OBP中,∠BOP=180°-∠OPB-∠OBP,  △BOC中,∠BOC=180°-∠OBC-∠OCB,  ∴∠POC=360°-∠BOP-∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,  ∵∠OPB=∠OBP,∠OBC=∠OCB,  ∴∠POC=2∠ABD=60°,  ∵PO=OC,  ∴△OPC是等边三角形,故②正确;  ③在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,  则∠BQO=∠PAO=120°,  在△BQO和△PAO中,  ∠BQO=∠PAO∠ABO=∠APOOB=OP
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表