人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在一点ζ,

[复制链接]

问题:设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在一点ζ,

答案:↓↓↓

网友采纳  ∫(a,b)f(x)dx=F(b)-F(b)因此∫(a,b)f(x)dx=f(b)(b-a)[F(b)-F(a)]/(b-a)=f(b)由拉克朗日定理,存在ξ使:[F(b)-F(a)]/(b-a)=f(ξ)ξ∈(a,b)b>ξ>a=>f(ξ)=f(b)由l罗尔定理,存在ζ∈(ξ,b)使f′(ζ)=0ζ∈(ξ,b)=>ζ∈...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表