人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【f(x)在[0,1]具有二阶导数,f(x)的绝对值小于等于a,f(x)的二阶导数的绝对值小于等于b,a,b为非负常数求证:f(x)的一阶导数的绝对值小于等于2a+b/2】

[复制链接]

问题:【f(x)在[0,1]具有二阶导数,f(x)的绝对值小于等于a,f(x)的二阶导数的绝对值小于等于b,a,b为非负常数求证:f(x)的一阶导数的绝对值小于等于2a+b/2】

答案:↓↓↓

网友采纳  要用泰勒公式f(1)=f(x)+f'(x)(1-x)+1/2*f''(x0)(1-x)^2,x0介于1和x之间f(0)=f(x)+f'(x)(0-x)+1/2*f''(x1)(0-x)^2,x1介于0和x之间所以f(1)-f(0)=f'(x)+1/2*f''(x0)(1-x)^2-1/2*f''(x1)x^2所以|f'(x)|≤|f(1)|+|...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表