人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

1.用三种不同的正多边形拼成平面镶嵌图案,边数分别为m,n,p,在同一顶点处,正多边形内角之和为360度,且每一顶点处,一种多边形只有一个,则m,n,p应满足().2.如果不等式ax+42,那么a的值是().

[复制链接]

问题:1.用三种不同的正多边形拼成平面镶嵌图案,边数分别为m,n,p,在同一顶点处,正多边形内角之和为360度,且每一顶点处,一种多边形只有一个,则m,n,p应满足().2.如果不等式ax+42,那么a的值是().

答案:↓↓↓

网友采纳  1.正多边形内角分别为:360/m,360/n,360/p,又每个顶点各多边形只有1个,则有360/m+360/n+360/p=360,即1/m+1/n+1/p=1  2.a>0时,不等式解为x2矛盾  故a-4/a,则有-4/a=2,得a=-2  3.不等式可化为(2-a)x
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表