人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【已知f(x)在区间(a,b)内存在二阶导数,a至少存在一点e,使得f``(e)=0】

[复制链接]

问题:【已知f(x)在区间(a,b)内存在二阶导数,a至少存在一点e,使得f``(e)=0】

答案:↓↓↓

网友采纳  证明:用罗尔定理.依题意显然有f(x),在[x1,x2],[x2,x3]上连续,在(x1,x2),(x2,x3)上可导,且有f(x1)=f(x2),f(x2)=f(x3),于是由罗尔定理得至少存在一点c1属于(x1,x2),至少存在一点c2属于(x2,x3)使得f'(c1)=0,f'(c2)=0,又f(x)二阶可导,易知f'(x)在[c1,c2]上连续,在(c1,c2)上可导,再由罗尔定理得至少存在一点e属于(c1,c2)使得f"(e)=0.命题得证.
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表