问题:设f(x)与g(x)可导,f^2(x)+g^2(x)≠0,求证函数y=根号下f^2(x)+g^2(x)可导
答案:↓↓↓ 富永滋的回答: 网友采纳 △x=h △y/△x=[√(f^2(x+h)+g^2(x+h))-√(f^2(x)+g^2(x))]/h 分子有理化 △y/△x=[(f^2(x+h)+g^2(x+h))-(f^2(x)+g^2(x))] /[h(√(f^2(x+h)+g^2(x+h))+√(f^2(x)+g^2(x)))](分子有理化) =[(f^2(x+h)-f^2(x))+(g^2(x+h)-g^2(x))] /[h(√(f^2(x+h)+g^2(x+h))+√(f^2(x)+g^2(x)))](集项) =[(f(x+h)-f(x))(f(x+h)+f(x))/h+(g(x+h)-g(x))(g(x+h)+g(x))/h]* 1/[(√(f^2(x+h)+g^2(x+h))+√(f^2(x)+g^2(x))](平方差分解因式) f(x)可导,f’(x)存在, 且f(x)连续,故当h→0时,f(x+h)→f(x) 于是当h→0时, (f(x+h)-f(x))(f(x+h)+f(x))/h→2f’(x)f(x) 同理当h→0时, (g(x+h)-g(x))(g(x+h)+g(x))/h→2g’(x)g(x) 同理当h→0时, 1/[(√(f^2(x+h)+g^2(x+h))+√(f^2(x)+g^2(x))]→1/[2√(f^2(x)+g^2(x))] (有意义,因为f^2(x)+g^2(x)≠0) 从而 (△x→0)lim(△y/△x)=[f’(x)f(x)+g’(x)g(x)]/√(f^2(x)+g^2(x)) |