问题:(1)1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100)(2)abc=1,计算1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca)
答案:↓↓↓ 韩希昌的回答: 网友采纳 (1)1+1/(1+2)+1/(1+2+3)+.+1/(1+2+3+.+100) =2/1*2+2/2*3+2/3*4+.+2/100*101 =2(1/1*2+1/2*3+1/3*4+.1/100*101) =2(1/1-1/2+1/2-1/3+1/3-1/4+.+1/100-1/101) =2*(1-1/101) =200/101 (2)abc=1,计算 1/(1+a+ab)+1/(1+b+bc)+1/(1+c+ca) =abc/(abc+a+ab)+abc/(1+b+bc)+1/(1+c+ca) =bc/(bc+1+b)+abc/(1+b+bc)+1/(1+c+ca) =(bc+abc)/(bc+1+b)+1/(1+c+ac) =b(c+ac)/(bc+abc+b)+1/(1+c+ac) =(c+ac)/(c+ac+1)+1/(1+c+ac) =(c+ac+1)/(c+ac+1) =1 |