人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设f(x)在区间[a,b]上连续,在(a,b)可导,证明:在(a,b)内至少存在一点ξ,使bf(b)-af(a)b-a=f(ξ)+ξf′(ξ).

[复制链接]

问题:设f(x)在区间[a,b]上连续,在(a,b)可导,证明:在(a,b)内至少存在一点ξ,使bf(b)-af(a)b-a=f(ξ)+ξf′(ξ).

答案:↓↓↓

网友采纳  构造辅助函数:F(x)=xf(x),  则:F(x)在[a,b]连续,在(a,b)可导,  从而F(x)满足拉格朗日中值定理,  则:在(a,b)内至少存在一点ξ,  使得:F(b)-F(a)b-a=F′(ξ)
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表