人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

牛顿莱布尼兹公式求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx求1,∫(下限为-1,上限为1)(x-1)^3dx2,求由∫(下限为0,上限为5)|1-x|dx3,求由∫(

[复制链接]

问题:牛顿莱布尼兹公式求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx求1,∫(下限为-1,上限为1)(x-1)^3dx2,求由∫(下限为0,上限为5)|1-x|dx3,求由∫(

答案:↓↓↓

网友采纳  e^(y)-e^(2)+sin(x)=0,y=ln(e^(2)-sin(x)),dy/dx=-cos(x)/(e^(2)-sin(x).  1).(x-1)^4/4|(-1,1)=(1-1))^4/4-(-1-1))^4/4=-4;  2).∫(下限为0,上限为5)|1-x|dx=-∫(下限为0,上限为1)x-1dx+  ∫(下限为1,上限为5)x-1dx=-(x-1)^2/2|(0,1)+(x-1)^2/2|(1,5)=17/2;  x√x^2是奇函数,所以∫(下限为-2,上限为2)x√x^2dx=0
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表