人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

f(x)具有二阶连续导数,f(0)=0,证明g(x)在负无穷到正无穷的导函数连续当不等于零时g(x)=f(x)/x;当x=0时g(x)=f′(0)

[复制链接]

问题:f(x)具有二阶连续导数,f(0)=0,证明g(x)在负无穷到正无穷的导函数连续当不等于零时g(x)=f(x)/x;当x=0时g(x)=f′(0)

答案:↓↓↓

网友采纳  当x不等于零时g(x)=f(x)/x,显然f(x)具有二阶连续导数,1/x也是可导的,故g′(x)=[xf′(x)-f(x)]/x^2,当x不等于0时,由于f(x)具有二阶连续导数,故f′(x)也是连续的,显然1/x^2也是连续的,由连续的可加性及可乘性知,当x不...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表