人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

若函数y=f(x)在点x0的某邻域内有连续的三阶导数,且f(x)的一阶和二阶导数为0,三阶导数不为0,则X0为什么不是f(X)的极值点?

[复制链接]

问题:若函数y=f(x)在点x0的某邻域内有连续的三阶导数,且f(x)的一阶和二阶导数为0,三阶导数不为0,则X0为什么不是f(X)的极值点?

答案:↓↓↓

网友采纳  f(x)在x0的邻域内泰勒展开,有:  y=f(x0)+f'(x0)(x-x0)+f"(x0)(x-x0)^2/2!+f"'(x0)(x-x0)^3/3!+.  因为f'(x0)=f"(x0)=0,所以  y=f(x0)+f"'(x0)(x-x0)^3/3!+.  当x=x0+h时,y-f(x0)≈f"'(x0)*h^3/3!  当x=x0-h时,y-f(x0)≈-f"'(x0)*h^3/3!  因为f"'(x0)不为0,所以上述x0左右邻域内y-f(x0)的符号是相反的,所以f(x0)不可能是极值点.
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表