人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设f(x)在[a,b]上二阶可导,且f″(x)<0,证明:∫baf(x)dx≤(b-a)f(a+b2).

[复制链接]

问题:设f(x)在[a,b]上二阶可导,且f″(x)<0,证明:∫baf(x)dx≤(b-a)f(a+b2).

答案:↓↓↓

网友采纳  证明:∀x,t∈[a,b],将f(x)在t处展开,可得  f(x)=f(t)+f′(t)(x−t)+f″(ξ)2!(x−t)
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表