人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1,证明函数f(x)在x=0处可导且取得极小值.

[复制链接]

问题:设f(x)在x=0处连续,且lim(x趋于0)f(x)/x^2=1,证明函数f(x)在x=0处可导且取得极小值.

答案:↓↓↓

网友采纳  f(x)在x=0处的导数为f‘(0)=lim(x趋于0)[f(x)-f(0)]/x因为f(x)在x=0连续,且lim(x趋于0)f(x)/x^2=1,所以f(0)=0lim(x趋于0)[f(x)-f(0)]/x=lim(x趋于0)f(x)/xlim(x趋于0)f(x)/x^2=1,说明f(x)在x=0处于x^2...
网友采纳  可以利用洛必达法则直接写出一阶导和二阶导的值么?然后利用二阶导等于二,大于零直接写是极小值
网友采纳  那你不是还要证明f(x)的二阶导存在嘛
网友采纳  可是洛比达不可以直接写出fx的导数么?只能用导数定义?
网友采纳  不行吧
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表