人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

已知函数f(x)=x2-2ax+5,若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围是()A.[2,3]B.[1,2]C.[-1,3]D.[2,+∞)

[复制链接]

问题:已知函数f(x)=x2-2ax+5,若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围是()A.[2,3]B.[1,2]C.[-1,3]D.[2,+∞)

答案:↓↓↓

网友采纳  函数f(x)=x2-2ax+5的对称轴是x=a,则其单调减区间为(-∞,a],因为f(x)在区间(-∞,2]上是减函数,所以2≤a,即a≥2.则|a-1|≥|(a+1)-a|=1,因此任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,只需|f...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表