问题:已知函数f(x)=2√3sinxcosx+2cosamp;#178;x-1,x∈R,1、求函数f(x)的最小正周期及在区间【0,π/2】上的最大值和最小值.2、若f(α)=6/5,α∈[π/4,π/2],求cos2α的值.
网友采纳 1. f(x)=√3sin2x+cos2x =2sin(2x+π/6) (1) x∈[0,π/2] 2x+π/6∈[π/6,7π/6] 2x+π/6=π/2,x=π/6 f(x)min=f(7π/6)=-2sinπ/6=-1 f(x)max=f(π/6)=2sinπ/2=2 (2) sin(2α+π/6)=3/5 ∵α∈[π/4,π/2] 2α+π/6∈[2π/3,7π/6] cos(2α+π/6)=-4/5 cos2α=cos[(2α+π/6)-π/6]=(-4√3+3)/10
任姝婕的回答:
网友采纳 1.f(x)min=f(7π/6)=-2sinπ/6=-1,为什么x=7π/6时有最小值?
郭宇红的回答:
网友采纳 g(x)=sin(x)在[-π/2,π/2]单增,[π/2,3π/2]单减