人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]绝对收敛答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎

[复制链接]

问题:设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]绝对收敛答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎

答案:↓↓↓

网友采纳  不是前面用了拉格朗日微分中值定理,就是那第一个等式.而第二个不等式则是用了连续函数的介值定理.f`(ζ)要小于f`(x)的最大值就是M.而1/n(n+1)小于1/n^2.由于1/n^2收敛.所以1/n(n+1)收敛.故绝对值f(1/n)-f(1/(n+1))收敛.则[f(1/n)-f(1/(n+1))]绝对收敛
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表