人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设f(x)在x=0的某一邻域内二阶可导,且lim(x--gt;0)f(x)/x=0,f#39;#39;(0)=2.求lim(x--gt;0)f(x)/x^2因为f(x)在x=0处二阶可导从而连续且lim(x--gt;0)f(x)/x=0为什么能得到lim(x--gt;0)f(x)=f(0)=0.请详细解释,多谢

[复制链接]

问题:设f(x)在x=0的某一邻域内二阶可导,且lim(x--gt;0)f(x)/x=0,f#39;#39;(0)=2.求lim(x--gt;0)f(x)/x^2因为f(x)在x=0处二阶可导从而连续且lim(x--gt;0)f(x)/x=0为什么能得到lim(x--gt;0)f(x)=f(0)=0.请详细解释,多谢

答案:↓↓↓

网友采纳  因f(x)在x=0处二阶可导从而连续f'(x)=lim(x-->0){[f(x)-f(0)]/x}=lim(x-->0){-f(0)/x},x-->0,f'(x)有意义(二阶可导从而连续),除非f(0)=0(分母x趋于0,则分子必趋于0)lim(x-->0)f(x)/x^2=lim(x-->0)f'(x)/(2x)(...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表