人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0有实根,且f(x)=0的实数根都是g(f(x))=0的根,反之,g(f(x))=0的实数根都是f(x)=0的根.(Ⅰ

[复制链接]

问题:已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0有实根,且f(x)=0的实数根都是g(f(x))=0的根,反之,g(f(x))=0的实数根都是f(x)=0的根.(Ⅰ

答案:↓↓↓

网友采纳  解(Ⅰ)设x0是f(x)=0的根,那么f(x0)=0,则x0是g(f(x))=0的根,则g(f(x0))=0即g(0)=0,所以d=0.  (Ⅱ)若a=3,f(-1)=0,所以b-c=0,即f(x)=0的根为0和-1,  ①当c=0时,则b=0这时f(x)=0的根为一切实数,而是g(f(x))=0,所以c=0符合要求.  当c≠0时,因为3(cx2+cx)2+c(cx2+cx)+c=0的根不可能为0和-1,所以3(cx2+cx)2+c(cx2+cx)+c必无实数根,  ②当c>0时,t=cx2+cx=c(x+12
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表