人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

已知:f(x)=lg(ax-bx)(a>1>b>0).(1)求f(x)的定义域;(2)判断f(x)在其定义域内的单调性;(3)若f(x)在(1,+∞)内恒为正,试比较a-b与1的大小.

[复制链接]

问题:已知:f(x)=lg(ax-bx)(a>1>b>0).(1)求f(x)的定义域;(2)判断f(x)在其定义域内的单调性;(3)若f(x)在(1,+∞)内恒为正,试比较a-b与1的大小.

答案:↓↓↓

网友采纳  (1)要使函数有意义,则ax-bx>0,∴(ab)x>1,∵ab>1,∴x>0,∴f(x)的定义域为(0,+∞).(2)设x2>x1>0,∵a>1>b>0,∴ax2>ax1,bx1>bx2,则−bx2>−bx1,∴ax2−bx2>ax1−bx1>0,∴ax2−bx2ax1...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表