人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

已知函数f(x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).(Ⅰ)若函数f(x)在R上单调,求a的值;(Ⅱ)若函数f(x)在区间[0,2]上的最大值是5,求a的取值范围.

[复制链接]

问题:已知函数f(x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).(Ⅰ)若函数f(x)在R上单调,求a的值;(Ⅱ)若函数f(x)在区间[0,2]上的最大值是5,求a的取值范围.

答案:↓↓↓

网友采纳  (Ⅰ)f′(x)=6x2-6(2+a2)x+6(1+a2)=6(x-1)(x-1-a2),因为函数f(x)在R上单调,所以1=1+a2,即a=0.(6分)(Ⅱ)因为1≤1+a2,所以{f(x)}max={f(1),f(2)}max={3a2+3,5}max=5,即3a2+3≤5,解此...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表