人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)

[复制链接]

问题:设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)

答案:↓↓↓

网友采纳  证明方法一:作FG⊥CD,FE⊥BE,可以得出GFEC为正方形.令AB=Y,BP=X,CE=Z,可得PC=Y-X.tan∠BAP=tan∠EPF=XY=ZY−X+Z,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),即得X=Z,得出△ABP≌△PEF,∴PA=PF.方法二:在AB...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表