人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【复变函数的上,运用留数定理求实变函数e^(-x^2)在区间(-∞,∞)上的定积分,函数原型为正态分布留数定理计算定积分中有一种类型是这样的:求实变函数f(x)在积分区间(-∞,∞)上的定积分;复变函】

[复制链接]

问题:【复变函数的上,运用留数定理求实变函数e^(-x^2)在区间(-∞,∞)上的定积分,函数原型为正态分布留数定理计算定积分中有一种类型是这样的:求实变函数f(x)在积分区间(-∞,∞)上的定积分;复变函】

答案:↓↓↓

网友采纳  注意这个定理的条件有个不成立:“当z在上半平面及实轴上趋近于无穷时,z*f(z)一致地趋近于零”  e^(-x^2)在x沿着虚轴正向趋于无穷的时候,是发散到无穷大的.  建议在理解这个定理的时候,可以结合扩充复平面的知识加深理解.
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表