人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【已知函数f(x)=log2(4^x+1)+kx,(k∈R)是偶函数,若k=4,求函数f(x)的零点是f(x)=log2(4^x+1)-kx】

[复制链接]

问题:【已知函数f(x)=log2(4^x+1)+kx,(k∈R)是偶函数,若k=4,求函数f(x)的零点是f(x)=log2(4^x+1)-kx】

答案:↓↓↓

网友采纳  令f(x)=0将k=4代入得log2(4^x+1)=4x把上面等式左右两边分别作为指数,以2为底,则是2^(log2(4^x+1))=2^(4x)化简得4^x+1=2^4x也即是2^2x+1=(2^2x)^2这就是一个关于2^2x的二元一次方程课做代换2^2x=t则有t+1=t^2直接...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表