人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

 找回密码
 立即注册

QQ登录

只需一步,快速开始

微信登录

微信扫码,快速开始

【已知函数f(x)=|x^2-1|+x^2+kx.若关于X的方程f(x)=0在(0,2)上有两个不同的解,x1,x2,求k的取值范围并证明1/x1+1/x2】

[复制链接]

问题:【已知函数f(x)=|x^2-1|+x^2+kx.若关于X的方程f(x)=0在(0,2)上有两个不同的解,x1,x2,求k的取值范围并证明1/x1+1/x2】

答案:↓↓↓

网友采纳  由f(x)=|x^2-1|+x^2+kx.若关于X的方程f(x)=0在(0,2)上有两个不同的解知:x²-1>0即x>1或x<-1,否则f(x)=|x^2-1|+x^2+kx=kx+1在(0,2)上不可能有两个不同的解,所以f(x)=|x^2-1|+x^2+kx=2x²+kx+1,关于X...
回复

使用道具 举报

小黑屋/人人终身学习知识网~是各类综合知识资源信息分享,提升综合素质与提高知识技能的终身学习网络平台

Powered by 5wangxiao

© 2007-2021 5wangxiao.Com Inc.

快速回复 返回顶部 返回列表