meili 发表于 2022-10-27 14:59:42

【{an}为等差数列求证(1)aka(2k)a(3k)构成等差数列(2)a1+an=a(1+k)=a(n-k)(3)SkS(2k)-SkS(3k)-S(2k)构成等差数列】

<p>问题:【{an}为等差数列求证(1)aka(2k)a(3k)构成等差数列(2)a1+an=a(1+k)=a(n-k)(3)SkS(2k)-SkS(3k)-S(2k)构成等差数列】
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">宋李俊的回答:<div class="content-b">网友采纳  {an}为等差数列  假设an=a1+(n-1)d,d为公差,a1为第一项  则ak=a1+(k-1)d  a(2k)=a1+(2k-1)d  a(3k)=a1+(3k-1)d  a(2k)-a(k)=-=kd  a(3k)-a(2k)=-=kd  所以得证等差  (2)题目写错了,应该是a1+an=a(1+k)+a(n-k)  a(1+k)+a(n-k)=a1+kd+a1+(n-k-1)d  =2a1+(n-k-1+k)d  =2a1+(n-1)d  a1+an=a1+a1+(n-1)d  =2a1+(n-1)d  所以得证  (3)Sk=(a1+ak)k/2=(2a1+(k-1)d)k/2  S(2k)=(2a1+(2k-1)d)2k/2  S(3k)=(2a1+(3k-1)d)3k/2  所以-Sk=[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]-(2a1+(k-1)d)k/2  =[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)2k/2]  =(2k-1)dk-(k-1)dk  =k^2*d  -=[(2a1+(3k-1)d)3k/2-(2a1+(2k-1)d)2k/2]-[(2a1+(2k-1)d)2k/2-(2a1+(k-1)d)k/2]  =k^2*d  所以等差
页: [1]
查看完整版本: 【{an}为等差数列求证(1)aka(2k)a(3k)构成等差数列(2)a1+an=a(1+k)=a(n-k)(3)SkS(2k)-SkS(3k)-S(2k)构成等差数列】