【高三数列题急求1.an=2a(n-1)+2的n-1次方a1=1,求an2.a1=1,a2=3a(n+2)=3a(n+1)-2an求an】
<p>问题:【高三数列题急求1.an=2a(n-1)+2的n-1次方a1=1,求an2.a1=1,a2=3a(n+2)=3a(n+1)-2an求an】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">侯本涛的回答:<div class="content-b">网友采纳 2^(n-2)a2-2^(n-1)a1=2^(n-1) 将这些式子左右分别全部相加起来,(有很多被消去的项,左边只剩下两项) 得到: an-2^(n-1)a1=(n-1)2^(n-1),a1=1 所以an=n2^(n-1)即为所求. 2. a(n+2)-a(n+1)=2(a(n+1)-an) 记bn=a(n+1)-an 那么{bn}就是以2为公比,以a2-a1=3-1=2为首项的等比数列.
页:
[1]