meili 发表于 2022-10-27 14:39:50

已知数列{an}中,a1=23,a2=89.当n≥2时,3an+1=4an-an-1(n∈N*)(1)证明:{an+1-an}为等比数列;(2)求数列{an}的通项;(3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn.

<p>问题:已知数列{an}中,a1=23,a2=89.当n≥2时,3an+1=4an-an-1(n∈N*)(1)证明:{an+1-an}为等比数列;(2)求数列{an}的通项;(3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn.
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">陈群阳的回答:<div class="content-b">网友采纳  (1)由题意,当n≥2,3an+1=4an-an-1⇒3an+1-3an=an-an-1  所以a
页: [1]
查看完整版本: 已知数列{an}中,a1=23,a2=89.当n≥2时,3an+1=4an-an-1(n∈N*)(1)证明:{an+1-an}为等比数列;(2)求数列{an}的通项;(3)若数列{bn}满足bn=n•an,求{bn}的前n项和Sn.