设数列{an}的首项a1=54,且an+1=12an,n为偶数an+14,n为奇数,记bn=a2n-1−14,n=1,2,3,…(Ⅰ)求数列{bn}的通项公式;(Ⅱ)若设数列{cn}的前n项和为Sn,cn=nbn,求Sn.
<p>问题:设数列{an}的首项a1=54,且an+1=12an,n为偶数an+14,n为奇数,记bn=a2n-1−14,n=1,2,3,…(Ⅰ)求数列{bn}的通项公式;(Ⅱ)若设数列{cn}的前n项和为Sn,cn=nbn,求Sn.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">刘振中的回答:<div class="content-b">网友采纳 解(Ⅰ)∵bn+1=a2n+1−14=12a2n−14=12(a2n−1+14)−14=12(a2n−1−14)=12bn,(n∈N*)所以{bn}是首项为a1−14=1,公比为12的等比数列∴bn=12n−1(Ⅱ)∵cn=nbn=n•12n−1∴Sn=1+2×12+3×122+…+(n−1)...
页:
[1]