meili 发表于 2022-10-14 16:20:45

高三数学一轮复习试题:平面向量的基本定理

<p>导读:高考,比的不是智商高低,比的是谁的耐心好,经过一轮、二轮、三轮复习的摧残还能有几个小伙伴说自己屹立不倒的?今天数学网小编末宝就给大家带来了高考数学一轮复习的同步练习,快来看看吧。</p><p></p><p></p><p><p class="MsoNormal">4.<span>已知向量</span><b><i>a</i></b><span>=</span>(<span>-</span>1<span>,</span>2)<span>,</span><b><i>b</i></b><span>=</span>(3<span>,</span><i>m</i>)<span>,</span><i>m</i>∈<b>R</b><span>,则</span>“<i>m</i><span>=-</span>6”<span>是</span>“<b><i>a</i></b>∥(<b><i>a</i></b><span>+</span><b><i>b</i></b>)”<span>的</span>(<span>  </span>)</p><p class="MsoNormal">A.<span>充分必要条件</span>B.<span>充分不必要条件</span></p><p class="MsoNormal">C.<span>必要不充分条件</span>D.<span>既不充分也不必要条件</span></p><p class="MsoNormal"><span>解析 由题意得</span><b><i>a</i></b><span>+</span><b><i>b</i></b><span>=</span>(2<span>,</span>2<span>+</span><i>m</i>)<span>,由</span><b><i>a</i></b>∥(<b><i>a</i></b><span>+</span><b><i>b</i></b>)<span>,得-</span>1×(2<span>+</span><i>m</i>)<span>=</span>2×2<span>,所以</span><i>m</i><span>=-</span>6<span>,则</span>“<i>m</i><span>=-</span>6”<span>是</span>“<b><i>a</i></b>∥(<b><i>a</i></b><span>+</span><b><i>b</i></b>)”<span>的充要条件,故选</span>A.</p><p class="MsoNormal"><span>答案 </span>A</p></p><p></p><p><p class="MsoNormal">7.<span>已知</span><b><i>a</i></b><span>=</span>(<span>,</span>1)<span>,若将向量-</span>2<b><i>a</i></b><span>绕坐标原点逆时针旋转</span>120°<span>得到向量</span><b><i>b</i></b><span>,则</span><b><i>b</i></b><span>的坐标为</span>(<span>  </span>)</p><p class="MsoNormal">A.(0<span>,</span>4)B.(2<span>,-</span>2)</p><p class="MsoNormal">C.(<span>-</span>2<span>,</span>2)D.(2<span>,-</span>2)</p><p class="MsoNormal"><span>解析 </span>∵<b><i>a</i></b><span>=</span>(<span>,</span>1)<span>,</span>∴-2<b><i>a</i></b><span>=</span>(<span>-</span>2<span>,-</span>2)<span>,易知向量-</span>2<b><i>a</i></b><span>与</span><i>x</i><span>轴正半轴的夹角</span><i>α</i><span>=</span>150°(<span>如图</span>).<span>向量-</span>2<b><i>a</i></b><span>绕坐标原点逆时针旋转</span>120°<span>得到向量</span><b><i>b</i></b><span>,在第四象限,与</span><i>x</i><span>轴正半轴的夹角</span><i>β</i><span>=</span>30°<span>,</span>∴<b><i>b</i></b><span>=</span>(2<span>,-</span>2)<span>,故选</span>B.</p><p class="MsoNormal"></p><p class="MsoNormal">12.<span>如图,在平行四边形</span><i>ABCD</i><span>中,</span><i>M</i><span>,</span><i>N</i><span>分别为</span><i>DC</i><span>,</span><i>BC</i><span>的中点,已知</span>→(AM)<span>=</span><b><i>c</i></b><span>,</span>→(AN)<span>=</span><b><i>d</i></b><span>,试用</span><b><i>c</i></b><span>,</span><b><i>d</i></b><span>表示</span>→(AB)<span>,</span>→(AD).</p><p class="MsoNormal"></p><p></p><p><p class="MsoNormal">②若是▱<i>ADBC</i><span>,由</span>→(CB)<span>=</span>→(AD)<span>,得</span></p><p class="MsoNormal">(0<span>,</span>2)<span>-</span>(<span>-</span>1<span>,-</span>2)<span>=</span>(<i>x</i><span>,</span><i>y</i>)<span>-</span>(1<span>,</span>0)<span>,</span></p><p class="MsoNormal"><span>即</span>(1<span>,</span>4)<span>=</span>(<i>x</i><span>-</span>1<span>,</span><i>y</i>)<span>,解得</span><i>x</i><span>=</span>2<span>,</span><i>y</i><span>=</span>4.</p><p class="MsoNormal">∴<i>D</i><span>点的坐标为</span>(2<span>,</span>4)(<span>如图中所示的</span><i>D</i><sub>2</sub>).</p><p class="MsoNormal">③若是▱<i>ABDC</i><span>,则由</span>→(AB)<span>=</span>→(CD)<span>,得</span></p><p class="MsoNormal">(0<span>,</span>2)<span>-</span>(1<span>,</span>0)<span>=</span>(<i>x</i><span>,</span><i>y</i>)<span>-</span>(<span>-</span>1<span>,-</span>2)<span>,</span></p><p class="MsoNormal"><span>即</span>(<span>-</span>1<span>,</span>2)<span>=</span>(<i>x</i><span>+</span>1<span>,</span><i>y</i><span>+</span>2).<span>解得</span><i>x</i><span>=-</span>2<span>,</span><i>y</i><span>=</span>0.</p><p class="MsoNormal">∴<i>D</i><span>点的坐标为</span>(<span>-</span>2<span>,</span>0)(<span>如图中所示的</span><i>D</i><sub>3</sub>)<span>,</span></p><p class="MsoNormal">∴以<i>A</i><span>,</span><i>B</i><span>,</span><i>C</i><span>为顶点的平行四边形的第四个顶点</span><i>D</i><span>的坐标为</span>(0<span>,-</span>4)<span>或</span>(2<span>,</span>4)<span>或</span>(<span>-</span>2<span>,</span> 0).<span></span></p></p></p><p>更多数学复习资讯,尽在数学网。</p><p><p class="p"><b>末宝带你游数学:</b></p><p class="p"><u><span>高三数学一轮复习试题:平面向量的概念</span></u></p><p class="p"><u><span>高三数学一轮复习试题:正弦定理和余弦定理</span></u></p><p class="p"><u><span>高考数学题型:椭圆与双曲线共焦点问题</span></u><span></span></p></p>
页: [1]
查看完整版本: 高三数学一轮复习试题:平面向量的基本定理