高三数学一轮复习试题:平面向量的概念
<p><strong>导读:</strong>高考,比的不是智商高低,比的是谁的耐心好,经过一轮、二轮、三轮复习的摧残还能有几个小伙伴说自己屹立不倒的?今天数学网小编末宝就给大家带来了高考数学一轮复习的同步练习,快来看看吧。</p><p class="MsoNormal">1.<span>设</span><b><i>a</i></b><span>是非零向量,</span><i>λ</i><span>是非零实数,下列结论中正确的是</span>(<span> </span>)</p><p class="MsoNormal">A.<b><i>a</i></b><span>与</span><i>λ</i><b><i>a</i></b><span>的方向相反</span> B.<b><i>a</i></b><span>与</span><i>λ</i><sup>2</sup><b><i>a</i></b><span>的方向相同</span> </p><p class="MsoNormal">C.|<span>-</span><i>λ</i><b><i>a</i></b>|≥|<b><i>a</i></b>| D.|<span>-</span><i>λ</i><b><i>a</i></b>|≥|<i>λ</i>|·<b><i>a</i></b> </p><p class="MsoNormal"><b><i><br /></i></b> </p><p class="MsoNormal">5.<span>已知点</span><i>O</i><span>,</span><i>A</i><span>,</span><i>B</i><span>不在同一条直线上,点</span><i>P</i><span>为该平面上一点,且</span>2→(OP)<span>=</span>2→(OA)<span>+</span>→(BA)<span>,则</span>(<span> </span>)</p><p class="MsoNormal">A.<span>点</span><i>P</i><span>在线段</span><i>AB</i><span>上</span> </p><p class="MsoNormal">B.<span>点</span><i>P</i><span>在线段</span><i>AB</i><span>的反向延长线上</span> </p><p class="MsoNormal">C.<span>点</span><i>P</i><span>在线段</span><i>AB</i><span>的延长线上</span> </p><p class="MsoNormal">D.<span>点</span><i>P</i><span>不在直线</span><i>AB</i><span>上</span> </p><p class="MsoNormal"><span>解析 因为</span>2→(OP)<span>=</span>2→(OA)<span>+</span>→(BA)<span>,所以</span>2→(AP)<span>=</span>→(BA)<span>,所以点</span><i>P</i><span>在线段</span><i>AB</i><span>的反向延长线上,故选</span>B.</p><p class="MsoNormal"><span>答案 </span>B</p><p class="MsoNormal"> </p><p class="MsoNormal"><br /></p><p class="MsoNormal">7.<span>若点</span><i>O</i><span>是</span>△<i>ABC</i><span>所在平面内的一点,且满足</span>|→(OB)<span>-</span>→(OC)<span>=</span>|→(OB)<span>+</span>→(OC)<span>-</span>2→(OA)|<span>,则</span>△<i>ABC</i><span>的形状为</span>________.</p><p class="MsoNormal"> </p><p class="MsoNormal">8.<span>向量</span><b><i>e</i></b><sub>1</sub><span>,</span><b><i>e</i></b><sub>2</sub><span>不共线,</span>→(AB)<span>=</span>3(<b><i>e</i></b><sub>1</sub><span>+</span><b><i>e</i></b><sub>2</sub>)<span>,</span>→(CB)<span>=</span><b><i>e</i></b><sub>2</sub><span>-</span><b><i>e</i></b><sub>1</sub><span>,</span>→(CD)<span>=</span>2<b><i>e</i></b><sub>1</sub><span>+</span><b><i>e</i></b><sub>2</sub><span>,给出下列结论:</span>①<i>A</i><span>,</span><i>B</i><span>,</span><i>C</i><span>共线;</span>②<i>A</i><span>,</span><i>B</i><span>,</span><i>D</i><span>共线;</span>③<i>B</i><span>,</span><i>C</i><span>,</span><i>D</i><span>共线;</span>④<i>A</i><span>,</span><i>C</i><span>,</span><i>D</i><span>共线,其中所有正确结论的序号为</span>________.</p><p class="MsoNormal"><span>解析 由</span>→(AC)<span>=</span>→(AB)<span>-</span>→(CB)<span>=</span>4<b><i>e</i></b><sub>1</sub><span>+</span>2<b><i>e</i></b><sub>2</sub><span>=</span>2→(CD)<span>,且</span>→(AB)<span>与</span>→(CB)<span>不共线,可得</span><i>A</i><span>,</span><i>C</i><span>,</span><i>D</i><span>共线,且</span><i>B</i><span>不在此直线上</span>.</p><p class="MsoNormal"><span>答案 </span>④</p><p class="MsoNormal">9.<span>已知</span>△<i>ABC</i><span>和点</span><i>M</i><span>满足</span>→(MA)<span>+</span>→(MB)<span>+</span>→(MC)<span>=</span>0<span>,若存在实数</span><i>m</i><span>使得</span>→(AB)<span>+</span>→(AC)<span>=</span><i>m</i>→(AM)<span>成立,则</span><i>m</i><span>=</span>________.</p><p class="MsoNormal"><span>解析 由已知条件得</span>→(MB)<span>+</span>→(MC)<span>=-</span>→(MA)<span>,如图,延长</span><i>AM</i><span>交</span><i>BC</i><span>于</span><i>D</i><span>点,则</span><i>D</i><span>为</span><i>BC</i><span>的中点</span>.<span>延长</span><i>B</i> <i>M</i><span>交</span><i>AC</i><span>于</span><i>E</i><span>点,延长</span><i>CM</i><span>交</span><i>AB</i><span>于</span><i>F</i><span>点,同理可证</span><i>E</i><span>、</span><i>F</i><span>分别为</span><i>AC</i><span>、</span><i>AB</i><span>的中点,即</span><i>M</i><span>为</span>△<i>ABC</i><span>的重心,</span>∴→(AM)<span>=</span>3(2)→(AD)<span>=</span>3(1)(→(AB)<span>+</span>→(AC))<span>,即</span>→(AB)<span>+</span>→(AC)<span>=</span>3→(AM)<span>,则</span><i>m</i><span>=</span>3.</p><p></p><p class="MsoNormal">12.<span>已知</span><i>O</i><span>,</span><i>A</i><span>,</span><i>B</i><span>是不共线的三点,且</span>→(OP)<span>=</span><i>m</i>→(OA)<span>+</span><i>n</i>→(OB)(<i>m</i><span>,</span><i>n</i>∈<b>R</b>).</p><p class="MsoNormal">(1)<span>若</span><i>m</i><span>+</span><i>n</i><span>=</span>1<span>,求证:</span><i>A</i><span>,</span><i>P</i><span>,</span><i>B</i><span>三点共线;</span> </p><p class="MsoNormal">(2)<span>若</span><i>A</i><span>,</span><i>P</i><span>,</span><i>B</i><span>三点共线,求证:</span><i>m</i><span>+</span><i>n</i><span>=</span>1.</p><p class="MsoNormal"><span>证明 </span>(1)<span>若</span><i>m</i><span>+</span><i>n</i><span>=</span>1<span>,</span> </p><p class="MsoNormal"><span>则</span>→(OP)<span>=</span><i>m</i>→(OA)<span>+</span>(1<span>-</span><i>m</i>)→(OB)<span>=</span>→(OB)<span>+</span><i>m</i>(→(OA)<span>-</span>→(OB))<span>,</span> </p><p class="MsoNormal">∴→(OP)<span>-</span>→(OB)<span>=</span><i>m</i>(→(OA)<span>-</span>→(OB))<span>,</span> </p><p class="MsoNormal"><span>即</span>→(BP)<span>=</span><i>m</i>→(BA)<span>,</span>∴→(BP)<span>与</span>→(BA)<span>共线</span>.</p><p class="MsoNormal"><span>又</span>∵→(BP)<span>与</span>→(BA)<span>有公共点</span><i>B</i><span>,则</span><i>A</i><span>、</span><i>P</i><span>、</span><i>B</i><span>三点共线,</span> </p><p class="MsoNormal"> </p><p>更多数学复习资讯,尽在数学网。</p><p class="p"><b>末宝带你游数学:</b> </p><p class="p"><u><span>高三数学一轮复习试题:正弦定理和余弦定理</span></u> </p><p class="p"><u><span>高考数学题型:椭圆与双曲线共焦点问题</span></u> </p><p class="p"><u><span>高考数学答题技巧:</span>19<span>条铁律</span><span>5</span><span>大思想</span></u> </p><p class="p"><u><span>学霸干货分享:初、高中数学学习方法</span></u><span></span> </p>
页:
[1]