meili 发表于 2022-10-14 16:09:55

高中数学二次函数性质的再研究同步检测题(附答案)

<p>第四节 二次函数性质的再研究</p><p>1.二次函数 的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x___时,y随x的增大而增大, x___时,y随x的增大而减小。</p><p>2.关于 , , 的图像,下列说法中不正确的是( )</p><p>A.顶点相同 B.对称轴相同 C.图像形状相同 D.最低点相同</p><p>3.两条抛物线 与 在同一坐标系内,下列说法中不正确的是( )</p><p>A.顶点相同 B.对称轴相同 C.开口方向相反 D.都有最小值</p><p>4.在抛物线 上,当y<0时,x的取值范围应为( )</p><p>A.x>0 B.x<0 C.x D.x0</p><p>5.对于抛物线 与 下列命题中错误的是( )</p><p>A.两条抛物线关于 轴对称 B.两条抛物线关于原点对称</p><p>C.两条抛物线各自关于 轴对称 D.两条抛物线没有公共点</p><p>6.抛物线y=-b +3的对称轴是___,顶点是___。</p><p>7.抛物线y=- -4的开口向___,顶点坐标___,对称轴___,x___时,y随x的增大而增大,x___时,y随x的增大而减小。</p><p>8.抛物线 的顶点坐标是( )</p><p>A.(1,3) B. ( 1,3) C.(1, 3) D.( 1, 3)</p><p>9.已知抛物线的顶点为( 1, 2),且通过(1,10),则这条抛物线的表达式为( )</p><p>A.y=3 -2 B.y=3 +2</p><p>C.y=3 -2 D.y=-3 -2</p><p>10.二次函数 的图像向左平移2个单位,向下平移3个单位 ,所得新函数表达式为( )</p><p>A.y=a +3 B.y=a -3</p><p>C.y=a +3 D.y=a -3</p><p>11.抛物线 的顶点坐标是( )</p><p>A.(2,0) B.(2,-2) C.(2,-8) D.(-2,-8)</p><p>12.对抛物线y= -3与y=- +4的说法不正确的是( )</p><p>A.抛物线的形状相同 B.抛物线的顶点相同</p><p>C.抛物线对称轴相同 D.抛物线的开口方向相反</p><p>13.函数y=a +c与y=ax+c(a0)在同一坐标系内的图像是图中的( )</p><p>14.化 为y= 为 a 的形式是____,图像的开口向 ____,顶点是____,对 称轴是____。</p><p>15.抛物线y= -1的顶点是 ____,对称轴是____。</p><p>16.函数y= +2x-5的图像的对称轴是( )</p><p>A.直线x=2 B.直线a=-2 C.直线y=2 D.直线x=4</p><p>17.二次函数y= 图像的顶点在( )</p><p>A.第一象限 B.第二象限 C.第三象限 D.第四象限</p><p>18.如果抛物线y= 的顶点在x轴上,那么c的值为( )</p><p>A.0 B.6 C.3 D.9</p><p>19.抛物线y= 的顶点在第三象限,试确定m的取值范围是( )</p><p>A.m<-1或m>2 B.m<0或m>-1 C.-1<m<0 D.m<-1</p><p>20.已知二次函数 ,如果a>0,b<0,c<0,那么这个函数图像的顶点必在 ( )</p><p>A.第一象限 B.第二象限 C.第三象限 D.第四象限</p><p>21.如图所示,满足a>0,b<0的函数y= 的图像是( )</p><p>22.画出 的图像,由图像你能发 现这个函数具有什么性质?</p><p>23.通过配方变形,说出函数 的图像的开口方向,对称轴,顶点坐标,这个函数有最大值还是最小值?这个值是多少?</p><p>24.根据下列条件,分别求出对应的二 次函数关系式。已知抛物线的顶点是(―1,―2),且过点(1,10)。</p><p>25.已知一个二次函数的图像过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。</p><p>参考答案</p><p>1.上 y轴 (0,0) 低 >0 <0</p><p>2.C 3.D 4.C 5.D</p><p>6.y轴 (0,3)</p><p>7.下 (―2,―4) x=-2 <-2 >-2</p><p>8.D 9.C 10.D 11.C 12.B 13.B</p><p>1 4.y= -1 上 (―2,―1) x=-2 15.(―2,―5) x=-2</p><p>16.A 17.B 18.D 19.D 20.D 21.C</p><p>22.图像略,性质:</p><p>(1)图像开口向上,对称轴是直线x=4,顶点(4,2)。</p><p>(2)x>4时,y随x增大而增大,x<4时,y随x增大而减小。</p><p>(3)x=4时, =2.</p><p>23.y= = ,开口向下,对称轴x=2,顶点(2,0),x=2时, =0</p><p>24.设抛物线是y= 2,将x=1,y=10代入上式得a=3,</p><p>函数关系式是y=3 2=3 6x+1.</p><p>25.解法1:设y=a 9,将x=0,y=1代入上式得a= ,</p><p>y= 9=</p><p>解法2:设y= ,由题意得</p><p>解之 y=</p>
页: [1]
查看完整版本: 高中数学二次函数性质的再研究同步检测题(附答案)