初中数学《二元一次方程组和它的解》教案
<p>二元一次方程组和它的解学案</p><p>教学目的</p><p>1.使学生了解二元一次方程,二元一次方程组的概念。</p><p>2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。</p><p>3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。</p><p>重点:了解二元一次方程、二元一次方程组以及二元一次方程组的解的含</p><p>难点;了解二元一次方程组的解的含义。</p><p>导学提纲:</p><p>1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一个数是否是这个方程的解?</p><p>2.阅读教材问题1思考下列问题</p><p>⑴.能否用我们已经学过的知识来解决这个问题?</p><p>用算术法解答</p><p>用一元一次方程解答</p><p>解后反思:既然是求两个未知量,那么能不能同时设两个未知数?</p><p>⑵.此问题中有两个问题如果分别设为x、y,怎样列式呢?(完成教材中的表格)</p><p>⑶.对于方程 x十y=7 3x+y=17 请思考下列问题</p><p>① 它们是一元一次方程吗?</p><p>② 这两个方程有没有共同特点/若有,有河共同特点?</p><p>③ 类比一元一次方程的概念,总结二元一次方程的概念</p><p>3.从教材中找出二元一次方程和二元一次方程组的概念(结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释)</p><p>注意二元一次方程组的书写方式,方程组中的各方程中, 同一个字母必须代表同一个量</p><p>4. 与 是否满足方程① 与 是否满足方程②类比一元一次方程的解总结二元一次方程组的解的概念</p><p>注意: (1) 未知数的值必须同时满足两个方程时, 才是方程组的解. 若取 , 时, 它们能满足方程①, 但不满足方程②, 所以它们不是方程组的解.</p><p>(2) 二元一次方程组的解是一对数, 而不是一个数, 所以必须把 与 合起来, 才是方程组的解.</p><p>5.思考讨论在方程组① ② ③ ④</p><p>⑤ ⑥ 中,属于二元一次方程组的有</p><p>达标检测:</p><p>1.根据下列语句, 分别设适当的未知数, 列出二元一次方程或方程组:</p><p>(1)甲数的 比乙数的2倍少7:_____________________________;</p><p>(2)摩托车的时速是货车的 倍,它们的速度之和是200千米/时:________;</p><p>(3)某种时装的价格是某种皮装的价格的1.4倍, 5件皮装比3件时装贵700元:______________________________.</p><p>2.下列方程是二元一次方程的是( )</p><p>A、2x+x =1 B、x-3y C、x +x-3=0 D、x+y=2</p><p>3.下列不是二元一次方程组的是( )</p><p>x+3y=5 m+3m=15 2x+3x=0 m+n=5</p><p>A 、 B、 C、 D、</p><p>2x-3x=3 + =3 -5y=0 2m+n=6</p><p>x=2</p><p>4.在方程3x-ky=0中,如果 是它的一个解,则k的值为_______.</p><p>y= -3</p><p>5.若mxy+9x+3y =-9是关于x、y的二元一次方程,则m=_______n=_______.</p>
页:
[1]