安岳县2023初二年级数学下学期期中测试卷(含答案解析)
<p>安岳县2023初二年级数学下学期期中测试卷(含答案解析)参考答案</p><p>一、选择题(共10小题,每小题3分)</p><p>题号 1 2 3 4 5 6 7 8 9 10</p><p>答案 D C A D C D D B B C</p><p>二、填空题(共6小题,每小题3分)</p><p>11. 5.512. m13. 12</p><p>14. a=-215. 1.516.</p><p>三、解答题(共9小题)</p><p>17.解:(1)原式=9-1+3...................................................................................2分</p><p>=11..................... ..............................................................................................3分</p><p>(2)去分母,得x-3x+15=5....................................................................................................5分</p><p>x=5.....................................................................................................6分</p><p>检验:当x=5时,原方程分母x-5=0,</p><p>∴x=5是原方程的增根,原方程无解........................................................................................7分</p><p>18.解:原式= ................................................................................................3分</p><p>= ................................................................................... ....................................5分</p><p>代入求值时只要不带入-2、0、2且答案正确即可...................................................................7分</p><p>19.解:(1)∵四边形ABCD是平行四边形</p><p>∴∠ABC+∠BAD=180°...............................................................................................................1分</p><p>∵BE、AE分别平分∠ABC和∠BAD,</p><p>∴∠ABE+∠BAE=90°.............................................................................................4分</p><p>即AE⊥BE................................................................................................................5分</p><p>(2)∵AE⊥BE</p><p>∴S△ABE=AE×BE÷2=3......................................... .............................6分</p><p>∴平行四边形ABCD的面积= 2S△ABE=6....................................................................................8分</p><p>20. 解:(1)∵点A(m,2)在y=x+1上</p><p>∴2=m+1</p><p>∴m=1</p><p>∴点A的坐标是(1,2)...............................................................................................................2分</p><p>∵点A(1,2)在 上, ,∴k=2</p><p>∴反比例函数的解析式为: ....................................... .......................................................4分</p><p>(2)P1(1,0),P2(-3,0).......... ............................................................................ ................8分</p><p>21.解:(1)a=94,b=93.............................................................................2分</p><p>(2)小东平时成绩的平均分= (90+93+94+ 93+95)÷5=93..................................................3分</p><p>∴ = =4.4.........................4分</p><p>= =2.8...........................5分</p><p>∵,∴小东平时成绩更稳定................................................................ ................6分</p><p>(3)任选一个计算</p><p>方案一:小伟数学总评成绩=98×0.1+96×0.3+95×0.6=95.6(分)...........................7分</p><p>小东数学总评成绩=93×0.1+92×0.3+98×0.6=95.7(分)...........................8分</p><p>方案二:小伟数学总评成绩=98×0.2+96×0.2+95×0.6=95.8(分)...........................7 分</p><p>小东数学总评成绩=93×0.2+92×0.2+98×0.6=95.8(分)...........................8分</p><p>方案三:小伟数学总评成绩=98×0.2+96×0.3+95×0.5=95.9(分)...........................7分</p><p>小东数学总评成绩=93×0.2+92×0.3+98×0.5=95.2(分)...........................8分</p><p>22.解:(1)解:FG⊥ED.理由如下………………………………………………………….1分</p><p>∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,</p><p>∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,</p><p>∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,</p><p>∴∠FHE=90°,∴FG⊥ED;……………………………………………………………..4分</p><p>(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,</p><p>∵CG∥EB,∴∠BCG+∠CBE=90°,∴∠BCG=90°,</p><p>∴四边形BCGE是矩形,</p><p>∵CB=BE,</p><p>∴四边形CBEG是正方形.………………………………………………………………...8分</p><p>23.解:(1)设王先生3月份购买的股票每股x元,根据题意,得........................................2分</p><p>解得:x=15.......................................................................................3分</p><p>经检验:x=15是原方程的根,且符合题意......................................................................4分</p><p>∴x+3=18</p><p>∴王先生3月、4月购买的股票每股分别是15元、18元....................................................5分</p><p>(2) =2023(元)</p><p>答:王先生一共获利2023元...........................................................8分</p><p>24.解:(1)∵1×2≠2×(1+2),4×4=2×(4+4),</p><p>∴点M不是和谐点,点N是和谐点.....................................................................................2分</p><p>(2)由题意得:当a>0时,(a+3)×2=3a,∴a=6,…………………………………….4分</p><p>点P(a,3)在直线 y=﹣x+b上,代入得:b=9…………………………………………....5分</p><p>当a<0时,(﹣a+3)×2=﹣3a,∴a=﹣6,…………………………………………………7分</p><p>点P(a,3)在直线y=﹣x+b上,代入得:b=﹣3,………………………………………..8分</p><p>∴a=6,b=9或a=﹣6,b=﹣3.……………………………………………………………….9分</p><p>25.解: (1)∵△ABC和△ADE是等边三角形</p><p>∴∠ABC=∠ADE=∠CAB =60°,AB=CA</p><p>∴∠BDA=∠ADE+∠BDE=60°+∠BDE</p><p>∠AFC=∠ABC+∠BCF=60°+∠BCF</p><p>∵CF//DE</p><p>∴∠BDE=∠BCF</p><p>∴∠BDA=∠AFC........................................................................1分</p><p>在△BAD和△ACF中</p><p>∠ABD=∠CAF,∠BDA=∠AFC, AB=CA</p><p>∴△BAD≌△ACF∴AD=CF......................................................................................................2分</p><p>∵AD=DE,∴DE CF</p><p>∴四边形DCFE是平行四边形...................................................................................................3分</p><p>(2)①∵△ABC和△ADE是等边三角形</p><p>∴∠ABC=∠ADE=∠BAC = 60°,AB=CA</p><p>∴∠BDA=180°-∠ADE-∠GDE=120°-∠GDE</p><p>∠AFC=180°-∠ABC-∠BCF=120°-∠BCF</p><p>∵CF//DE,∴∠GDE=∠BCF,∴∠BDA=∠AFC</p><p>在△BAD和△ACF中,∠ABD=∠CAF=120°,∠BDA=∠AFC, AB=CA</p><p>∴△BAD≌△ACF,∴AD=CF</p><p>∵AD=DE,∴D E CF</p><p>∴四边形DCFE是平行四边形...................................................................................................6分</p><p>∵DB=AB=2,∠ADB+∠BAD =∠ABC= 60°</p><p>∴∠ADB=∠BAD = 30°,∴∠EDC =∠ADE +∠ADB =90°</p><p>∴平行四边形DCFE是矩形 ......................................................................................................7分</p><p>②四边形DCFE不可能成为菱形</p><p>∵t0 ,∴BD0</p><p>在△BAD中,AB+BDAD ......................................................................................................8分</p><p>∵△ABC和△ADE是等边三角形,∴AD=D E,AB=BC</p><p>∴BC+BD DE ,即DC ED</p><p>∴四边形DCFE不可能成为菱形.............................................................................................9分</p>
页:
[1]