meili 发表于 2022-10-27 16:03:59

数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712

<p>问题:数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">侯方勇的回答:<div class="content-b">网友采纳  ∵an•bn=1∴bn=1n2+3n+2=1(n+1)(n+2)∴s10=12×3+13×4+ + 110×11+111×12=(12-13)+(13−14) ++(110−111) +(111−112)=12-112=512故选项为B....
页: [1]
查看完整版本: 数列{an}、{bn}满足an•bn=1,an=n2+3n+2,则{bn}的前10项之和等于()A.13B.512C.12D.712